
The Illustrated AlphaFold
Elana Simon, Jake Silberg

Background and Existing Work

Protein Folding Challenge

● Proteins are linear chains of amino acids
● Amino acids interact with each other and naturally folds into

lowest-energy 3D structure
● This structure determines protein's function
● Applications: drug design, disease research, protein engineering

Existing Work - AlphaFold 1 (2018):

● DeepMind's first attempt at the protein folding problem
● Built on previous work using evolutionary data to predict protein structure
● Used deep learning to predict distances between amino acid and construct

protein structures.
● Significantly outperformed other methods at the time, but still not at

experimental accuracy levels

Existing Work - AlphaFold 2 (2020):

Machine Learning Framework:

● Utilized an attention-based neural network architecture called
Evoformer

● Incorporated a multiple sequence alignment (MSA) and pair
representation

Performance:

● Used pattern recognition for structure prediction, with minimal
physics-based refinement

● Achieved breakthrough accuracy in protein structure prediction
● Predicted structures for nearly all cataloged proteins known to

science

Existing Work - AlphaFold 2 (2020):

Molecular Structure Prediction

Limitation of AlphaFold 2:

● Focused on single protein structures
● Input: Amino acid sequences only
● Limited to standard amino acids

Real Biology is Complex:

● Proteins rarely work alone
● Drug design needs protein-ligand interactions
● DNA/RNA interactions crucial for gene regulation

AlphaFold 3 (2024):

Function:

● Expanded beyond proteins to predict structures and interactions of
various biomolecules

● Can model proteins, DNA, RNA, ligands, and their interactions
● Predicts chemical modifications that control cell functioning

Machine Learning Framework:

● Enhanced version of the Evoformer module
● Introduced a diffusion network for structure assembly

Performance:

● Improved accuracy in predicting molecular interactions by at least 50%
compared to existing methods

Key Idea & Designs

Architecture Overview

Input Preparation - Two key representations

Input Preparation

Genetic Search: finds similar molecular
sequence across different species, get
Multiple Sequence Alignment (MSA)
(N_MSA*N_token*C_m)

Template Search: finds similar known
structures, get template matrix t
(N_token*N_token*C_t*N_templates)

Conformers : local chemical arrangements
(initial atom positions, chemical properties),
get original atom-level representation matrix
c (C_atom*N_atom)

Create Atom-Level Representations

Single Representation (c →
q):

Matrix c: stores atom
properties

Matrix q: copy of c that will be
updated during processing

Pair Representation (p):
Stores distances between
atoms within each token

Update Atom-Level Representations (Atom Transformer)

Adaptive LayerNorm: uses input c
to dynamically generate
normalization parameters for q

Attention with Pair Bias:
enhances standard self-attention by
using pair representation as bias

Conditioned Gating: Controls
information flow using gates
generated from original atom
representation c

Conditioned Transition: Modified
MLP layer using SwiGLU activation,
sandwiched between AdaNorm and
gating, both conditioned on c

Aggregate Atom-Level → Token-Level

Token-Level Single Representation
(s): atoms (q) → projection →
averaging → feature addition →
projection → s_init (s)

Token-Level Pair Representation
(z): s_init (s) → projection (c_token
→ c_z) → z_ij = si, sj→ add r.p.e →
add bonds → z_init

Set aside the atom-level
representations (c, q, p) and focus
on updating our token-level
representations s and z in the next
section (with the help of m and t).

Representation Learning

Template module: updates z using
the structure templates t

MSA module: first updates the MSA
using input token level single
representation (q)
● adds MSA to update

token-level pair representation
(z) using Outer Product Mean

● updates the MSA based on z
with a simplified version of self
attention with pair bias

Pairformer Module

Updates s and z with geometry-inspired (triangle) attention

Why Look at Triangles

Geometric Principle

● Based on triangle inequality: sum of any two sides
> third side

● Helps constrain predictions using geometric
relationships

Implementation in AF3

● Each pair relationship (z_ij) is updated using all
possible third points (k)

Directional Relationships

● Two types of paths considered: outgoing edges and
incoming edges

Triangle Updates - Outgoing
Multiply corresponding elements:

● Take row i from a
● Take row j from b
● Element-wise multiplication
● Sum over k dimension

Update zij using zik and zjk

Triangle Updates - Incoming
Multiply corresponding elements:

● Take column i from a
● Take column j from b
● Element-wise multiplication
● Sum over k dimension

Update zij using zki and zkj

Triangle Attention (Starting Node)

For position zij:
Query: from zij
Keys: from zik (all k in
row i)
Bias: from zjk

Triangle Attention (Ending Node)

For position zij:
Query: from zij
Keys: from zki (all k in
column i)
Bias: from zkj

Single Attention with Pair Bias

Structure Prediction via Diffusion

Training Phase:

● Start: Real atomic coordinates (xt=0)
● Process: Add noise gradually → xt=T
● Learn: Predict noise added at each step
● Loss: Compare predicted vs actual noise

Inference Phase:

● Start: Random coordinates (xt=T)
● Process: Iteratively remove predicted noise
● End: Final denoised structure (x0)

Conditional Diffusion

Conditional Diffusion: final generation matches the information represented by
dataset and conditioning input.

AF3 Implementation:

● data: a matrix x with the x,y,z coordinates of all the atoms.
● Training phase: add noise to matrix x and predict the noises while having

input condition
● Inference phase:

○ starting with random coordinates
○ first randomly rotate and translate our entire predicted complex.
○ then add a small amount of noise to the coordinates to encourage more heterogeneous

generations.
○ Finally, we predict a de-noising step using the Diffusion Module.

Diffusion Module

1. Prepare token-level conditioning
tensors

1a. Prepare token-level pair conditioning
tensor (z): Combine z_trunk with the
relative positional encodings through
projection and transitions

1b. Prepare token-level single
conditioning tensor (s): Merge s_inputs
and s_trunk, add timestep information
through Fourier embedding

Diffusion Module

2. Prepare atom-level tensors, apply
atom-level attention, and aggregate
back to token-level

2a. 2b. create atom-level conditioning
tensors (q, p), based on the current
token-level representations (s, z)

2c,2d,2e,2f use the atom’s current
coordinates (x) by the variance of the data
to update (q). Finally, we update (q) with
the Atom Transformer using (p), and
aggregate back to tokens level (a)

Diffusion Module

3. Apply attention at the token-level

3a. apply attention to update
token-level representation (a) of the
atom coordinates and sequence
information, which mirrors the Atom
Transformer at input preparation but for
tokens.

Diffusion Module

4. Apply attention at the atom-level to
predict atom-level noise updates

4a. use our updated a to update q using
the Atom Transformer, by broadcasting our
a first.

4b. 4c. predict de-noising update by maps
this atom-level representation q back to R3
and apply update to x.

Evaluation

Evaluation

Thoughts

ML Musings

AlphaFold as Retrieval-Augmented Generation:

Include retrievals from the training set at inference time, by utilizing an MSA and template
search

Large Language Models routinely use Retrieval Augmented Generation systems such as
a traditional web search at inference time to orient the model toward relevant information

Pair-Bias Attention

Attention where the queries, keys, and values all originate from the same source (like in
self-attention), but there is a bias term added to the attention map from another source

This particular type of cross-biasing is not seen to be used in other fields

