The Illustrated AlphaFold

Elana Simon, Jake Silberg

Background and Existing Work

Protein Folding Challenge

- Proteins are linear chains of amino acids
- Amino acids interact with each other and naturally folds into lowest-energy 3D structure
- This structure determines protein's function
- Applications: drug design, disease research, protein engineering

Existing Work - AlphaFold 1 (2018):

- DeepMind's first attempt at the protein folding problem
- Built on previous work using evolutionary data to predict protein structure
- Used deep learning to predict distances between amino acid and construct protein structures.
- Significantly outperformed other methods at the time, but still not at experimental accuracy levels

Existing Work - AlphaFold 2 (2020):

Machine Learning Framework:

- Utilized an attention-based neural network architecture called Evoformer
- Incorporated a multiple sequence alignment (MSA) and pair representation

Performance:

- Used pattern recognition for structure prediction, with minimal physics-based refinement
- Achieved breakthrough accuracy in protein structure prediction
- Predicted structures for nearly all cataloged proteins known to science

Existing Work - AlphaFold 2 (2020):

Molecular Structure Prediction

Limitation of AlphaFold 2:

- Focused on single protein structures
- Input: Amino acid sequences only
- Limited to standard amino acids

Real Biology is Complex:

- Proteins rarely work alone
- Drug design needs protein-ligand interactions
- DNA/RNA interactions crucial for gene regulation

AlphaFold 3 (2024):

Function:

- Expanded beyond proteins to predict structures and interactions of various biomolecules
- Can model proteins, DNA, RNA, ligands, and their interactions
- Predicts chemical modifications that control cell functioning

Machine Learning Framework:

- Enhanced version of the Evoformer module
- Introduced a diffusion network for structure assembly

Performance:

Improved accuracy in predicting molecular interactions by at least 50% compared to existing methods

Key Idea & Designs

Architecture Overview

Input Preparation - Two key representations

^{*}atoms=heavy atoms

Input Preparation

1. Input Preparation

Genetic Search: finds similar molecular sequence across different species, get Multiple Sequence Alignment (**MSA**) (N_MSA*N_token*C_m)

Template Search: finds similar known structures, get template matrix **t** (N_token*N_token*C_t*N_templates)

Conformers : local chemical arrangements (initial atom positions, chemical properties), get original atom-level representation matrix **c** (C_atom*N_atom)

Create Atom-Level Representations

Single Representation (c \rightarrow q):

Matrix c: stores atom properties

Matrix q: copy of c that will be updated during processing

Pair Representation (p): Stores distances between atoms within each token

Create Atom-Level Representations

Update Atom-Level Representations (Atom Transformer)

Adaptive LayerNorm: uses input c to dynamically generate normalization parameters for q

Attention with Pair Bias:

enhances standard self-attention by using pair representation as bias

Conditioned Gating: Controls information flow using gates generated from original atom representation c

Conditioned Transition: Modified MLP layer using SwiGLU activation, sandwiched between AdaNorm and gating, both conditioned on c

Aggregate Atom-Level → Token-Level

Token-Level Single Representation

(s): atoms (q) \rightarrow projection \rightarrow averaging \rightarrow feature addition \rightarrow projection \rightarrow s_init (s)

Token-Level Pair Representation (z): $s_{init} (s) \rightarrow projection (c_token <math>\rightarrow c_z) \rightarrow z_{ij} = si, sj \rightarrow add r.p.e \rightarrow add bonds \rightarrow z init$

Set aside the **atom-level** representations (**c**, **q**, **p**) and focus on updating our token-level representations **s** and **z** in the next section (with the help of m and t).

Representation Learning

Template module: updates **z** using the structure templates **t**

MSA module: first updates the MSA using input token level single representation (**q**)

- adds MSA to update token-level pair representation (z) using Outer Product Mean
- updates the MSA based on z with a simplified version of self attention with pair bias

Pairformer Module

Updates s and z with geometry-inspired (triangle) attention

Why Look at Triangles

Geometric Principle

- Based on triangle inequality: sum of any two sides
 > third side
- Helps constrain predictions using geometric relationships

Implementation in AF3

 Each pair relationship (z_ij) is updated using all possible third points (k)

Directional Relationships

• Two types of paths considered: outgoing edges and incoming edges

Triangle Updates - Outgoing

Triangle Updates - Incoming

Triangle Attention (Starting Node)

Triangle Attention (Ending Node)

Single Attention with Pair Bias

Attention with pair-bias (Token-Level)

demonstrating the process for updating one token at a time (token s) operations not part of standard multi-head self-attention are **bolded**

Structure Prediction via Diffusion

Training Phase:

- Start: Real atomic coordinates (xt=0)
- Process: Add noise gradually \rightarrow xt=T
- Learn: Predict noise added at each step
- Loss: Compare predicted vs actual noise

Inference Phase:

- Start: Random coordinates (xt=T)
- Process: Iteratively remove predicted noise
- End: Final denoised structure (x0)

Conditional Diffusion

Conditional Diffusion: final generation matches the information represented by dataset and conditioning input.

AF3 Implementation:

- **data**: a matrix x with the x,y,z coordinates of all the atoms.
- **Training phase**: add noise to matrix x and predict the noises while having input condition

• Inference phase:

- starting with random coordinates
- first randomly rotate and translate our entire predicted complex.
- then add a small amount of noise to the coordinates to encourage more heterogeneous generations.
- Finally, we predict a de-noising step using the Diffusion Module.

1. Prepare token-level conditioning tensors

1a. Prepare **token-level** pair conditioning tensor (**z**): Combine z_trunk with the relative positional encodings through projection and transitions

1b. Prepare token-level single conditioning tensor (**s**): Merge s_inputs and s_trunk, add timestep information through Fourier embedding

2. Prepare atom-level tensors, apply atom-level attention, and aggregate back to token-level

2a. **2b**. create atom-level conditioning tensors (**q**, **p**), based on the current token-level representations (**s**, **z**)

2c,2d,2e,2f use the atom's current coordinates (**x**) by the variance of the data to update (**q**). Finally, we update (**q**) with the Atom Transformer using (**p**), and aggregate back to tokens level (**a**)

3. Apply attention at the token-level

3a. apply attention to update token-level representation (**a**) of the atom coordinates and sequence information, which mirrors the Atom Transformer at input preparation but for tokens.

4. Apply attention at the atom-level to predict atom-level noise updates

4a. use our updated **a** to update **q** using the Atom Transformer, by broadcasting our **a** first.

4b. **4c**. predict de-noising update by maps this atom-level representation q back to R3 and apply update to x.

Evaluation

Evaluation

ML Musings

AlphaFold as Retrieval-Augmented Generation:

Include retrievals from the training set at inference time, by utilizing an MSA and template search

Large Language Models routinely use Retrieval Augmented Generation systems such as a traditional web search at inference time to orient the model toward relevant information

Pair-Bias Attention

Attention where the queries, keys, and values all originate from the same source (like in self-attention), but there is a bias term added to the attention map from another source

This particular type of cross-biasing is not seen to be used in other fields