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Background and Existing Work



Protein Folding Challenge

e Proteins are linear chains of amino acids

e Amino acids interact with each other and naturally folds into
lowest-energy 3D structure

e This structure determines protein's function

e Applications: drug design, disease research, protein engineering



Existing Work - AlphaFold 1 (2018):

e DeepMind's first attempt at the protein folding problem

e Built on previous work using evolutionary data to predict protein structure

e Used deep learning to predict distances between amino acid and construct
protein structures.

e Significantly outperformed other methods at the time, but still not at
experimental accuracy levels



Existing Work - AlphaFold 2 (2020):

Machine Learning Framework:

e Ultilized an attention-based neural network architecture called

Evoformer
e Incorporated a multiple sequence alignment (MSA) and pair

representation
Performance:

e Used pattern recognition for structure prediction, with minimal
physics-based refinement

e Achieved breakthrough accuracy in protein structure prediction

e Predicted structures for nearly all cataloged proteins known to

science



Existing Work - AlphaFold 2 (2020):

GreTecse

Input sequence

Genetic
database

search

Structure

database

Templates

Ong

representation, —»

(s.re)

IIII i

Pair
representation, —p-
(rric)

Evoformer
(48 blocks)

|
2B

—_— "

i Bt s o i

ingle repr. (nc)] —»

IIBI I
Pair

representation | ——p
(rr.c)

Structure
module
(8 blocks)

High
confidence

3D structure

< Recycling (three times)




Molecular Structure Prediction

Limitation of AlphaFold 2:

e Focused on single protein structures
e Input: Amino acid sequences only
e Limited to standard amino acids

Real Biology is Complex:

e Proteins rarely work alone
e Drug design needs protein-ligand interactions
e DNA/RNA interactions crucial for gene regulation



AlphaFold 3 (2024).

Function:

e Expanded beyond proteins to predict structures and interactions of
various biomolecules

e Can model proteins, DNA, RNA, ligands, and their interactions
e Predicts chemical modifications that control cell functioning

Machine Learning Framework:

e Enhanced version of the Evoformer module
e Introduced a diffusion network for structure assembly

Performance:

e Improved accuracy in predicting molecular interactions by at least 50%
compared to existing methods



Key ldea & Designs



Architecture Overview
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Input Preparation - Two key representations
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Input Preparation
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Genetic Search: finds similar molecular
sequence across different species, get
Multiple Sequence Alignment (MSA)
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Create Atom-Level Representations
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Update Atom-Level Representations (Atom Transformer)

Overview of Atom Transformer
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Aggregate Atom-Level — Token-Level

Token-Level Single Representation
(s): atoms (q) — projection —
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projection — s_init (s)
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Representation Learning
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Pairformer Module
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Why Look at Triangles

Geometric Principle

e Based on triangle inequality: sum of any two sides
> third side

e Helps constrain predictions using geometric
relationships

Implementation in AF3
“outgoing edges” “incoming edges”
e Each pair relationship (z_ij) is updated using all ®..
possible third points (k) "

Directional Relationships i

e Two types of paths considered: outgoing edges and
incoming edges



Triangle Updates - Outgoing
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Neokens

Triangle Updates - Incoming

Triangle Update (Incoming)
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Niokens

Triangle Attention (Starting Node)
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Triangle Attention (Ending Node)
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Single Attention with Pair Bias

Attention with pair-bias (Token-Level)
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Structure Prediction via Diffusion

Training Phase:

Start: Real atomic coordinates (xt=0)
Process: Add noise gradually — xt=T
Learn: Predict noise added at each step
Loss: Compare predicted vs actual noise

Inference Phase:

e Start: Random coordinates (xt=T)
e Process: Iteratively remove predicted noise
e End: Final denoised structure (x0)



Conditional Diffusion

Conditional Diffusion: final generation matches the information represented by
dataset and conditioning input.

AF3 Implementation:

data: a matrix x with the x,y,z coordinates of all the atoms.
e Training phase: add noise to matrix x and predict the noises while having
input condition

e Inference phase:
o starting with random coordinates
o first randomly rotate and translate our entire predicted complex.
o then add a small amount of noise to the coordinates to encourage more heterogeneous
generations.
o Finally, we predict a de-noising step using the Diffusion Module.



Diffusion Module
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Diffusion Module

Diffusion Module Overview
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Diffusion Module

Diffusion Module Overview
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Diffusion Module
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token-level pair
conditioning
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Diffusion Module Overview
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Evaluation



Evaluation
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Thoughts



ML Musings

AlphaFold as Retrieval-Augmented Generation:

Include retrievals from the training set at inference time, by utilizing an MSA and template
search

Large Language Models routinely use Retrieval Augmented Generation systems such as
a traditional web search at inference time to orient the model toward relevant information

Pair-Bias Attention

Attention where the queries, keys, and values all originate from the same source (like in
self-attention), but there is a bias term added to the attention map from another source

This particular type of cross-biasing is not seen to be used in other fields



