The lllustrated AlphaFold

Elana Simon, Jake Silberg

Background and Existing Work

Protein Folding Challenge

e Proteins are linear chains of amino acids

e Amino acids interact with each other and naturally folds into
lowest-energy 3D structure

e This structure determines protein's function

e Applications: drug design, disease research, protein engineering

Existing Work - AlphaFold 1 (2018):

e DeepMind's first attempt at the protein folding problem

e Built on previous work using evolutionary data to predict protein structure

e Used deep learning to predict distances between amino acid and construct
protein structures.

e Significantly outperformed other methods at the time, but still not at
experimental accuracy levels

Existing Work - AlphaFold 2 (2020):

Machine Learning Framework:

e Ultilized an attention-based neural network architecture called

Evoformer
e Incorporated a multiple sequence alignment (MSA) and pair

representation
Performance:

e Used pattern recognition for structure prediction, with minimal
physics-based refinement

e Achieved breakthrough accuracy in protein structure prediction

e Predicted structures for nearly all cataloged proteins known to

science

Existing Work - AlphaFold 2 (2020):

GreTecse

Input sequence

Genetic
database

search

Structure

database

Templates

Ong

representation, —»

(s.re)

IIII i

Pair
representation, —p-
(rric)

Evoformer
(48 blocks)

|
2B

—_— "

i Bt s o i

ingle repr. (nc)] —»

IIBI I
Pair

representation | ——p
(rr.c)

Structure
module
(8 blocks)

High
confidence

3D structure

< Recycling (three times)

Molecular Structure Prediction

Limitation of AlphaFold 2:

e Focused on single protein structures
e Input: Amino acid sequences only
e Limited to standard amino acids

Real Biology is Complex:

e Proteins rarely work alone
e Drug design needs protein-ligand interactions
e DNA/RNA interactions crucial for gene regulation

AlphaFold 3 (2024).

Function:

e Expanded beyond proteins to predict structures and interactions of
various biomolecules

e Can model proteins, DNA, RNA, ligands, and their interactions
e Predicts chemical modifications that control cell functioning

Machine Learning Framework:

e Enhanced version of the Evoformer module
e Introduced a diffusion network for structure assembly

Performance:

e Improved accuracy in predicting molecular interactions by at least 50%
compared to existing methods

Key ldea & Designs

Architecture Overview

b3

.. Template

)
search it
N
. Genetic | =5 2
search @ &=
=== Input
., Conformer & 4, embedder
Sequences generation (3 blocks)
ligands, : i
covalent
bonds

< » Confidence

] E
Inputs 1 1
Y , 4

Template MSA
—+> module — module —
Pai A (2 blocks) (4 blocks) Pairformer
= , (48 blocks)
SingI‘e_A

‘ Recycling

_ (4 blocks)

> module
l Yy

0 ——l =100
_ Diffusion 2 ;}&‘
; —:* module ‘ ‘
(3 + 24 + 3 blocks) %ﬁu

Diffusion iterations ‘

1. Input Preparation

2. Representation Learning

3. Structure Prediction

Input Preparation - Two key representations

Standard Amino Acid Standard Nucleotide Modified Amino Acid Modified Nucleotide
(serine) (adenosine) (phosphoserine) (methyladenosine)
NH; Hig o
o = - N SN (0] OH N S
\ A </ I) \\ o \ _OH 74 N
N Z P N\ < |)
HO OH o N N HO ZN\ NN W7
0 0 OH HO o 6
NH, e fa
9 o 0 OH
7 atoms* 23 atoms* 11 atoms* 24 atoms*
1tokens 1token 11 tokens 24 tokens

Ligand
(ibuprofen)

OH
o

15 atoms*
15 tokens

*atoms=heavy atoms

Input Preparation

Sequences,

ligands,

covalent

bonds

E

. Template 8
search 4
_» Genetic E== a
search &=
\ — Input
3
—» Conformer ¢ embedder
generation (3 blocks)

1. Input Preparation

Genetic Search: finds similar molecular
sequence across different species, get
Multiple Sequence Alignment (MSA)
(N_MSA*N_token*C_m)

Template Search: finds similar known
structures, get template matrix t
(N_token*N_token*C_t*N_templates)

Conformers : local chemical arrangements
(initial atom positions, chemical properties),
get original atom-level representation matrix
¢ (C_atom*N_atom)

Create Atom-Level Representations

Smgle Representatlon (C - Create Atom-Level Representations
q): o il

linear projection [Catom = Catompair . add ¢, and c,, to p;..,
Matrix c: stores atom Ry -

1 istances ocal distances ; p linear P
p rO p e rtl e S il el pret —_— . et ::jb:.g g\fverse y l::y_ers with
distances and g]i:tsinces and cr:zsr:?\:zltions
Matrix q: copy of ¢ that will be §- L : ;
updated during processing . w

Pair Representation (p):
Stores distances between
atoms within each token

update ¢ using Atom
Transformer and
pair representation p

Update Atom-Level Representations (Atom Transformer)

Overview of Atom Transformer

LayerNorm

1. Adaptive °

2. Single Attention
with Pair Bias*
—_—

*using sparse attention

q
N Gating

3. Conditioned

Natoms.

T
4. Conditioned °

Transition
(repeat 1-3 but
replace step 2
with MLP)

q

5-

Adaptive LayerNorm: uses input c
to dynamically generate
normalization parameters for q

Attention with Pair Bias:
enhances standard self-attention by
using pair representation as bias

Conditioned Gating: Controls
information flow using gates
generated from original atom
representation ¢

Conditioned Transition: Modified
MLP layer using SwiGLU activation,
sandwiched between AdaNorm and
gating, both conditioned on c

Aggregate Atom-Level — Token-Level

Token-Level Single Representation
(s): atoms (q) — projection —
averaging — feature addition —
projection — s_init (s)

Token-Level Pair Representation
(z): s_init (s) — projection (c_token
—C z)— z ij=si,sj—»>addrp.e—
add bonds — z_init

Set aside the atom-level
representations (c, q, p) and focus
on updating our token-level
representations s and z in the next
section (with the help of m and t).

Information about related
sequences and their structures

Multiple Sequence Alignment

Nusa

o
Niokens

Structure Templates
t

Information about all the
atoms (“single”)

Original Atom-Level Updated Atom-Level
Single Representation Single Representation
c q

Token-Level Single Representation

Cioken

Niokens

Information about all the
pairs of atoms (“pair”)

Atom-Level Pair Representation

p

Natoms

latoms o

Token-Level Pair Representation

Niokens

Niokens

Representation Learning

Template module: updates z using }%”i? %

the structure templates t

Inputs 1 1
Y) \ 4

MSA module: first updates the MSA B
using input token level single P) -
representation (q) s * (2 blocks) | (4 blocks) Pairformer
e adds MSA to update § i bioeks)
token-level pair representation SingTe—;—(f/ ”
(z) using Outer Product Mean &
e updates the MSA based on z g — '

with a simplified version of self
attention with pair bias

Pairformer Module

Pair representation 48 blocks Pair representation
(n,n,c) (n, n,c)
Triangle Triangle T”SZTfQ_’Ie Trisaerl]fgle
: : : around around
outgoing incoming starting iy
edges edges " fode
Single] Single
representation (n, c) Single representation (n, c)
attention -
— with pair Transition — :) —
bias j j

U

Updates s and z with geometry-inspired (triangle) attention

Why Look at Triangles

Geometric Principle

e Based on triangle inequality: sum of any two sides
> third side

e Helps constrain predictions using geometric
relationships

Implementation in AF3
“outgoing edges” “incoming edges”
e Each pair relationship (z_ij) is updated using all ®..
possible third points (k) "

Directional Relationships i

e Two types of paths considered: outgoing edges and
incoming edges

Triangle Updates - Outgoing

a

[c: > c]
H
3
z

<
Niokens
linear projection B
[c: > c] e
then sigmoid g
z
? —
b
o linear projection
Niokens [z > c]

Niokens

linear projection
[c: > c]
then sigmoid

linear projection
[c:>c]
then sigmoid

Niokens

Ntokens

Triangle Update (Outgoing)

linear projection n
o —

element-wise
multiplication
Rl st

Ntokens

I (@ * b
for each position z;,
select row i from a and
row j from b

iterate over all tokens
< (k) and element-wise
multiple a,, * b,

Niokens

element-wise
multiplication g

Multiply corresponding elements:
e Takerowifroma
e Take row jfromb
e Element-wise multiplication
e Sum over k dimension
Update zij using zik and zjk

4

element-wise (
multiply by g«
— 2
-2
o
NlDi!l\s

“outgoing edges”

zii

Neokens

Triangle Updates - Incoming

Triangle Update (Incoming)

linear projection (i

[cz>c]
©
a’
linear projection
[cz ¢l
then sigmoid z
3
y 4 zZ
4
b
\\“‘o
o linear projection $
Nioken: [c: > c]

linear projection

[c: > c]
then sigmoid :
3
z
linear projection
[cz~>c]
then sigmoid H
k]
z

element-wise

multiplication
e

§
2
z

element-wise

multiplication §
e i

4

I, (3, * by

for each position z;;
select column i from a
and column j from b

iterate over all tokens
(k) and element-wise
multiple a,, * b,

Niokens

z

Niokens

Multiply corresponding elements:
Take column i from a

Take column j from b
Element-wise multiplication
Sum over k dimension
Update zij using zki and zk|

(element-wise

multiply by g H
— §
z

d

Niokens

“incoming edges”

Zyi Zyj
Zi i

Niokens

Triangle Attention (Starting Node)

Niokens

o

[cz > c]

[cz > c]

fe:21

for each head:
linear projection

Niokens

for each head:
linear projection

for each head:
linear projection

for each head:
linear projection

[c: > c] £
2
z
Niokens
b
g9
for each head:
linear projection
[c:>c]
| then sigmoid 5
z

Nickens

Triangle Attention (Starting Node)

not part of iti-head self- are bolded)
dot product q", 55;'9 and)
with each k", e | Moy H =
element-wise
add b", use attention
scores a",; to take
weighted sum of
values v,
o"
(element-wise
multiply o™ by g"

Niokens
Niokens

Neokees Niokens

concatenate
heads

§
3
z

For position zij:

Query: from zij
Keys: from zik (all k in

attention along row i
with bias from row j, with
each column in a row

indexed by k row |)
Bias: from zjk
linear projection #
¢ [c*h=cy) 3
< o o
Niokens ¢

“outgoing edges”

Triangle Attention (Ending Node)

Triangle Attention (Ending Node)
(operations not part of standard multi-head self-attention are bolded) FO r pOS|t|On ZlJ _

q
I':‘Lif;':of;:::on (X attention along column i Query' from ZIJ
gl . B with bias from column j . i (i
I " scale and '
z§ Ll I softmax with each row in a Keys : from zki (all k'in
< . i i
L [} ' column indexed by k column |)
F ‘ i . .
K PR Bias: from zkj
|for each head: = add b, use attention
|linear projection scores a",; to take
|[cz>c) i3 — weighted sum of
H values v,
E z I & o
_} o <
Niokens Niskers £

linear projection

b"
for each head: o
linear projection i element-wise concatenate < [c*h- ¢y %
[le:>0 R .

fe:>1] multiply o™ by g" heads

Niokens
Niokens

Niokens
°

z o

Niokens

Niokens Nugkens ey

for each head:

“incoming edges”

fe: = ¢ §
Z|
A k

Nickens
g’
for each head:
linear projection
[c:>c) . g
| then sigmoid § J Zk" zk']
z Zi,j 3

Niokens

Single Attention with Pair Bias

Attention with pair-bias (Token-Level)

demonstrating the process for updating one token at a time (token s)
operations not part of standard multi-head self-attention are bolded

for each head: h
linear projection query’s

[Ctoken = €]
c
dot product scale and attn
" and softmax SUSSRE

N —

Ntokens Ntokens

Ctoken

for each head:
linear projection
[Ctoken > €]

P . —

N, .

Niokens tovens. element-wise
add b"

use attention

scores ' to take

weighted sum of

for each head:
values

linear projection
[c: > 1]

bias"s

Niokens
l N
+

Ntokens (o]
h e .
Nuox = h °|°"':‘I°'I‘"‘"'" h - I linear projection
. ! multiply concatenate [c*h = Croken]
f'or each head: o" by gate" Féads token. s
linear projection c c 3
[Croken = €] c I g
c
Ntokens "
for each head:
linear projection g ate” 5
[Ctoken > €] Niokens

then sigmoid .
- > ¢

Structure Prediction via Diffusion

Training Phase:

Start: Real atomic coordinates (xt=0)
Process: Add noise gradually — xt=T
Learn: Predict noise added at each step
Loss: Compare predicted vs actual noise

Inference Phase:

e Start: Random coordinates (xt=T)
e Process: Iteratively remove predicted noise
e End: Final denoised structure (x0)

Conditional Diffusion

Conditional Diffusion: final generation matches the information represented by
dataset and conditioning input.

AF3 Implementation:

data: a matrix x with the x,y,z coordinates of all the atoms.
e Training phase: add noise to matrix x and predict the noises while having
input condition

e Inference phase:
o starting with random coordinates
o first randomly rotate and translate our entire predicted complex.
o then add a small amount of noise to the coordinates to encourage more heterogeneous
generations.
o Finally, we predict a de-noising step using the Diffusion Module.

Diffusion Module

Biffusion Module@venyview 1. Prepare token-level conditioning

1a Prepare
token-level pair

ﬂ gencRiching tensors
Y !

o e 1a. Prepare token-level pair conditioning
2 e o tere T tensor (z): Combine z_trunk with the
fomsar | relative positional encodings through

p projection and transitions
3a Token-level attention
¥ iy A S 1b. Prepare token-level single
o prepre k- conditioning tensor (s): Merge s_inputs
condfoning and s_trunk, add timestep information
| . .
through Fourier embedding

4a Expand to atom-level
and update with atom
attention

2f Aggregate to
token-level

2b Create atom-level 2d Update with q
single conditioning information
tensor from coord: — 1 3
N [
L 2e Update with atom 4b Predict
attention de-noising
. ' ' update
2c Create “dimensionless” version of I
by scaling to have unit variance dmmen
- e [

Diffusion Module

Diffusion Module Overview

1a Prepare

2. Prepare atom-level tensors, apply

ﬂ :kdt"gp atom-level attention, and aggregate
Iy) back to token-level
2 e o tere T 2a. 2b. create atom-level conditioning
ok conciioning | tensors (q, p), based on the current
g token-level representations (s, z)
3a Token-level attention
> e by corctioeng 2c,2d,2e,2f use the atom’s current
Wibraparg ok coordinates (x) by the variance of the data
condioning to update (q). Finally, we update (q) with
= - the Atom Transformer using (p), and
- 4! 1 aggregate back to tokens level (a)
{ 2f Aggregate to 4a Expand to atom-level
token-level and update with atom

2b Create atom-level
single conditioning
tensor

2d Update with
information
from coord:

2c Create “dimensionless” version of
by scaling to have unit variance

q
—).

attention

N [
2e Update with atom 4b Predict
attention de-noising
update
I
4c Apply update
- _—
. [

Diffusion Module

Diffusion Module Overview

1a Prepare
token-level pair

tensor

3. Apply attention at the token-level

3 z conditioning
1
i3
e

]

Nowons

3a. apply attention to update
token-level representation (a) of the
atom coordinates and sequence

e 4
2a. Create atom-level
pair conditioning
tensor J
v £

information, which mirrors the Atom
il Transformer at input preparation but for

biased by conditioning

conditioning
tensor

1b Prepare token-
level single
.
Cc
’-

2b Create atom-level
single conditioning
tensor

2d Update with
information
from coord

tensors (=,7) tOkenS .

Moo Poners

2f Aggregate to 4a Expand to atom-level
token-level and update with atom
attention

>

2c Create “dimensionless” version of »
by scaling to have unit variance

2e Update with atom 4b Predict
attention l de-noising
_ update
i 4c Apply update
- Ty e
T -

Diffusion Module

1a Prepare
token-level pair
conditioning
tensor

Diffusion Module Overview

4. Apply attention at the atom-level to
predict atom-level noise updates

.Zi
] ﬁ

-

Nowons

2a. Create atom-level
pair conditioning

J

a first.

3a Token-level attention
biased by conditioning

tensor

1b Prepare token-

level single

conditioning

} tensor
I T
LS.
[2b Create atom-level

single conditioning
tensor

3-

Moo

2d Update with
information
from coord

[

L 2e Update with atom

2c Create “dimensionless” version of »
by scaling to have unit variance

attention

2f Aggregate to
token-level

tensors (+,7)

4a Expand to atom-level
and update with atom
attention

Numa

4b Predict
de-noising
" update
I

4c Apply update
—_— 3 -

4a. use our updated a to update q using
the Atom Transformer, by broadcasting our

4b. 4c. predict de-noising update by maps
this atom-level representation q back to R3
and apply update to x.

Nt

Evaluation

Evaluation

- Ligands PoseBusters set Nucleic acids Covalent modifications Proteins
100 AF3] AF3 Kok
i RoseTTAFold2NA W AF-M 2.3
Alchemy_RNA2 (has human input) *kk Hkk 0
80 % *kk — I
*k
£ 601 | -
; | |
®
{ | 4
a 40 | * .
| LY
20 = =
0 T T T T T T T T T T T T T
AF3 AutoDock RoseTTAFold PDB PDB CASP15 Bonded Glycosylation Modified residues All Protein- Protein
2019 cut-off Vina All-Atom protein-RNA protein-dsDNA RNA n=28 Protein DNA RNA protein-protein antibody monomers
n =428 n =428 n =427 n:=25 n=238 n=8 n=1,064 n=65 n =338

n=40 n=91 n=23

Thoughts

ML Musings

AlphaFold as Retrieval-Augmented Generation:

Include retrievals from the training set at inference time, by utilizing an MSA and template
search

Large Language Models routinely use Retrieval Augmented Generation systems such as
a traditional web search at inference time to orient the model toward relevant information

Pair-Bias Attention

Attention where the queries, keys, and values all originate from the same source (like in
self-attention), but there is a bias term added to the attention map from another source

This particular type of cross-biasing is not seen to be used in other fields

