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Background and Existing Work



Protein Folding Challenge

● Proteins are linear chains of amino acids
● Amino acids interact with each other and naturally folds into 

lowest-energy 3D structure
● This structure determines protein's function
● Applications: drug design, disease research, protein engineering



Existing Work - AlphaFold 1 (2018):

● DeepMind's first attempt at the protein folding problem
● Built on previous work using evolutionary data to predict protein structure
● Used deep learning to predict distances between amino acid and construct 

protein structures.
● Significantly outperformed other methods at the time, but still not at 

experimental accuracy levels



Existing Work - AlphaFold 2 (2020):

Machine Learning Framework:

● Utilized an attention-based neural network architecture called 
Evoformer

● Incorporated a multiple sequence alignment (MSA) and pair 
representation

Performance:

● Used pattern recognition for structure prediction, with minimal 
physics-based refinement

● Achieved breakthrough accuracy in protein structure prediction
● Predicted structures for nearly all cataloged proteins known to 

science



Existing Work - AlphaFold 2 (2020):



Molecular Structure Prediction

Limitation of AlphaFold 2:

● Focused on single protein structures
● Input: Amino acid sequences only
● Limited to standard amino acids

Real Biology is Complex:

● Proteins rarely work alone
● Drug design needs protein-ligand interactions
● DNA/RNA interactions crucial for gene regulation



AlphaFold 3 (2024):

Function:

● Expanded beyond proteins to predict structures and interactions of 
various biomolecules

● Can model proteins, DNA, RNA, ligands, and their interactions
● Predicts chemical modifications that control cell functioning

Machine Learning Framework:

● Enhanced version of the Evoformer module
● Introduced a diffusion network for structure assembly

Performance:

● Improved accuracy in predicting molecular interactions by at least 50% 
compared to existing methods



Key Idea & Designs



Architecture Overview



Input Preparation - Two key representations



Input Preparation

Genetic Search: finds similar molecular 
sequence across different species, get 
Multiple Sequence Alignment (MSA) 
(N_MSA*N_token*C_m)

Template Search: finds similar known 
structures, get template matrix t 
(N_token*N_token*C_t*N_templates)

Conformers : local chemical arrangements 
(initial atom positions, chemical properties), 
get original atom-level representation matrix 
c (C_atom*N_atom)



Create Atom-Level Representations

Single Representation (c → 
q):

Matrix c: stores atom 
properties 

Matrix q: copy of c that will be 
updated during processing

Pair Representation (p): 
Stores distances between 
atoms within each token



Update Atom-Level Representations (Atom Transformer)

Adaptive LayerNorm: uses input c 
to dynamically generate 
normalization parameters for q 

Attention with Pair Bias: 
enhances standard self-attention by 
using pair representation as bias 

Conditioned Gating: Controls 
information flow using gates 
generated from original atom 
representation c

Conditioned Transition: Modified 
MLP layer using SwiGLU activation, 
sandwiched between AdaNorm and 
gating, both conditioned on c



Aggregate Atom-Level → Token-Level

Token-Level Single Representation 
(s): atoms (q) → projection → 
averaging → feature addition → 
projection → s_init (s)

Token-Level Pair Representation 
(z):  s_init (s) → projection (c_token 
→ c_z ) → z_ij = si, sj→ add r.p.e → 
add bonds → z_init

Set aside the atom-level 
representations (c, q, p) and focus 
on updating our token-level 
representations s and z in the next 
section (with the help of m and t).



Representation Learning

Template module: updates z using 
the structure templates t

MSA module: first updates the MSA 
using input token level single 
representation (q) 
● adds MSA to update 

token-level pair representation 
(z) using Outer Product Mean

● updates the MSA based on z 
with a simplified version of self 
attention with pair bias



Pairformer Module

Updates s and z with geometry-inspired (triangle) attention



Why Look at Triangles

Geometric Principle

● Based on triangle inequality: sum of any two sides 
> third side 

● Helps constrain predictions using geometric 
relationships

Implementation in AF3

● Each pair relationship (z_ij) is updated using all 
possible third points (k)

Directional Relationships

● Two types of paths considered: outgoing edges and 
incoming edges



Triangle Updates - Outgoing
Multiply corresponding elements:

● Take row i from a
● Take row j from b
● Element-wise multiplication
● Sum over k dimension

Update zij using zik and zjk



Triangle Updates - Incoming
Multiply corresponding elements:

● Take column i from a
● Take column j from b
● Element-wise multiplication
● Sum over k dimension

Update zij using zki and zkj



Triangle Attention (Starting Node)

For position zij: 
Query: from zij 
Keys: from zik (all k in 
row i) 
Bias: from zjk 



Triangle Attention (Ending Node)

For position zij: 
Query: from zij 
Keys: from zki (all k in 
column i) 
Bias: from zkj 



Single Attention with Pair Bias



Structure Prediction via Diffusion 

Training Phase:

● Start: Real atomic coordinates (xt=0)
● Process: Add noise gradually → xt=T
● Learn: Predict noise added at each step
● Loss: Compare predicted vs actual noise

Inference Phase:

● Start: Random coordinates (xt=T)
● Process: Iteratively remove predicted noise
● End: Final denoised structure (x0)



Conditional Diffusion

Conditional Diffusion: final generation matches the information represented by 
dataset and conditioning input.

AF3 Implementation:

● data: a matrix x with the x,y,z coordinates of all the atoms. 
● Training phase:  add noise to matrix x and predict the noises while having 

input condition
● Inference phase: 

○ starting with random coordinates
○ first randomly rotate and translate our entire predicted complex. 
○ then add a small amount of noise to the coordinates to encourage more heterogeneous 

generations. 
○ Finally, we predict a de-noising step using the Diffusion Module.  



Diffusion Module

1. Prepare token-level conditioning 
tensors

1a. Prepare token-level pair conditioning 
tensor (z): Combine z_trunk with the 
relative positional encodings through 
projection and transitions

1b. Prepare token-level single 
conditioning tensor (s): Merge s_inputs 
and s_trunk, add timestep information 
through Fourier embedding



Diffusion Module

2. Prepare atom-level tensors, apply 
atom-level attention, and aggregate 
back to token-level

2a. 2b. create atom-level conditioning 
tensors (q, p), based on the current 
token-level representations (s, z) 

2c,2d,2e,2f use the atom’s current 
coordinates (x) by the variance of the data 
to update (q). Finally, we update (q) with 
the Atom Transformer using (p), and 
aggregate back to tokens level (a)



Diffusion Module

3. Apply attention at the token-level

3a. apply attention to update 
token-level representation (a) of the 
atom coordinates and sequence 
information, which mirrors the Atom 
Transformer at input preparation but for 
tokens.



Diffusion Module

4. Apply attention at the atom-level to 
predict atom-level noise updates

4a. use our updated a to update q using 
the Atom Transformer, by broadcasting our 
a first.

4b. 4c. predict de-noising update by maps 
this atom-level representation q back to R3 
and apply update to x.



Evaluation



Evaluation



Thoughts



ML Musings

AlphaFold as Retrieval-Augmented Generation:

Include retrievals from the training set at inference time, by utilizing an MSA and template 
search

Large Language Models routinely use Retrieval Augmented Generation systems such as 
a traditional web search at inference time to orient the model toward relevant information

Pair-Bias Attention

Attention where the queries, keys, and values all originate from the same source (like in 
self-attention), but there is a bias term added to the attention map from another source

This particular type of cross-biasing is not seen to be used in other fields


